kansai

Technology Reports of Kansai University

Technology Reports of Kansai University (ISSN: 04532198) is a monthly peer-reviewed and open-access international Journal. It was first built in 1959 and officially in 1975 till now by kansai university, japan. The journal covers all sort of engineering topic, mathematics and physics. Technology Reports of Kansai University (TRKU) was closed access journal until 2017. After that TRKU became open access journal. TRKU is a scopus indexed journal and directly run by faculty of engineering, kansai university.

Google Scholar

Submission Deadline

Volume - 66 , Issue 02
26 Jan 2025
Day
Hour
Min
Sec

Upcoming Publication

Volume - not available , Issue not available
00:00:00

Aim and Scope

Technology Reports of Kansai University (ISSN: 04532198) is a peer-reviewed journal. The journal covers all sort of engineering topic as well as mathematics and physics. the journal's scopes are in the following fields but not limited to:

Electrical Engineering and Telecommunication Section:

Electrical Engineering, Telecommunication Engineering, Electro-mechanical System Engineering, Biological Biosystem Engineering, Integrated Engineering, Electronic Engineering, Hardware-software co-design and interfacing, Semiconductor chip, Peripheral equipments, Nanotechnology, Advanced control theories and applications, Machine design and optimization , Turbines micro-turbines, FACTS devices , Insulation systems , Power quality , High voltage engineering, Electrical actuators , Energy optimization , Electric drives , Electrical machines, HVDC transmission, Power electronics.

Computer Science Section :

Software Engineering, Data Security , Computer Vision , Image Processing, Cryptography, Computer Networking, Database system and Management, Data mining, Big Data, Robotics , Parallel and distributed processing , Artificial Intelligence , Natural language processing , Neural Networking, Distributed Systems , Fuzzy logic, Advance programming, Machine learning, Internet & the Web, Information Technology , Computer architecture, Virtual vision and virtual simulations, Operating systems, Cryptosystems and data compression, Security and privacy, Algorithms, Sensors and ad-hoc networks, Graph theory, Pattern/image recognition, Neural networks.

Civil and architectural engineering :

Architectural Drawing, Architectural Style, Architectural Theory, Biomechanics, Building Materials, Coastal Engineering, Construction Engineering, Control Engineering, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Materials Engineering, Municipal Or Urban Engineering, Organic Architecture, Sociology of Architecture, Structural Engineering, Surveying, Transportation Engineering.

Mechanical and Materials Engineering :

kinematics and dynamics of rigid bodies, theory of machines and mechanisms, vibration and balancing of machine parts, stability of mechanical systems, mechanics of continuum, strength of materials, fatigue of materials, hydromechanics, aerodynamics, thermodynamics, heat transfer, thermo fluids, nanofluids, energy systems, renewable and alternative energy, engine, fuels, nanomaterial, material synthesis and characterization, principles of the micro-macro transition, elastic behavior, plastic behavior, high-temperature creep, fatigue, fracture, metals, polymers, ceramics, intermetallics.

Chemical Engineering :

Chemical engineering fundamentals, Physical, Theoretical and Computational Chemistry, Chemical engineering educational challenges and development, Chemical reaction engineering, Chemical engineering equipment design and process design, Thermodynamics, Catalysis & reaction engineering, Particulate systems, Rheology, Multifase flows, Interfacial & colloidal phenomena, Transport phenomena in porous/granular media, Membranes and membrane science, Crystallization, distillation, absorption and extraction, Ionic liquids/electrolyte solutions.

Food Engineering :

Food science, Food engineering, Food microbiology, Food packaging, Food preservation, Food technology, Aseptic processing, Food fortification, Food rheology, Dietary supplement, Food safety, Food chemistry.

Physics Section:

Astrophysics, Atomic and molecular physics, Biophysics, Chemical physics, Civil engineering, Cluster physics, Computational physics, Condensed matter, Cosmology, Device physics, Fluid dynamics, Geophysics, High energy particle physics, Laser, Mechanical engineering, Medical physics, Nanotechnology, Nonlinear science, Nuclear physics, Optics, Photonics, Plasma and fluid physics, Quantum physics, Robotics, Soft matter and polymers.

Mathematics Section:

Actuarial science, Algebra, Algebraic geometry, Analysis and advanced calculus, Approximation theory, Boundry layer theory, Calculus of variations, Combinatorics, Complex analysis, Continuum mechanics, Cryptography, Demography, Differential equations, Differential geometry, Dynamical systems, Econometrics, Fluid mechanics, Functional analysis, Game theory, General topology, Geometry, Graph theory, Group theory, Industrial mathematics, Information theory, Integral transforms and integral equations, Lie algebras, Logic, Magnetohydrodynamics, Mathematical analysis.

Latest Articles of

Technology Reports of Kansai University

Journal ID : TRKU-17-06-2020-10813
Total View : 424

Title : Turmeric Extract Antioxidant Activity Against Trans Fatty Acids Formation in Repeatedly Heated Cooking Oil (RCO)

Abstract :

Curcuma longa (turmeric) extract is known to have good and stable antioxidant properties. Therefore, this study aims to determine the antioxidant activity of the turmeric extract towards the inhibition of trans fatty acids formation in repeatedly heated cooking oil (RCO). This experimental research was conducted through several procedures, including maceration to obtain the turmeric extract, which was subsequently added to the RCO resulting from 1, 5, and 10 frying times. In addition, the extraction of oil absorbed in fried food was also performed, followed by contents analysis of trans fatty acids. The results showed the potential application of turmeric extract as an antioxidant, due to the high IC50 value of 12.38μg/mL, alongside 21.85% free radicals suppressing activity in cooking oils

Full article
Journal ID : TRKU-17-06-2020-10812
Total View : 358

Title : Study on minimizing impact when colliding between helmet frame and hard object flying at high speed

Abstract :

For athletes who play adventure sports such as baseball, hockey, or in the military, they often use helmets that require high strength. Consequently, helmets are often designed with additional bearing frames. Conventional collisions come from the direct collision of the helmet's shell, transmitting force onto the load-bearing frame of the helmet then shifting force to the head of the helmet. Therefore, the bearing frame structure significantly plays a vital role in human safety. This paper investigates a simulation solution to minimize the impact on the head of a person when the helmet frame is impacted with a rigid object moving at high velocity. The metal frame structure is calculated to provide the best bearing capacity, combined with Foams/Styrofoam material to absorb energy. From that, we propose solutions to improve the structure and select the appropriate materials to minimize the impact on the head of the helmet when the collision occurs. In this study, the authors used finite element analysis (FEA) and performed on ABAQUS software

Full article
Journal ID : TRKU-16-06-2020-10811
Total View : 344

Title : Potential Threat of Heavy Metal Accumulation in Aquatic Biota from Wadaslintang Reservoir, Central Java, Indonesia

Abstract :

Increased population and urbanization is one of the changes in the use of the Wadaslintang Reservoir catchment area, this condition has the potential to cause pollution of some heavy metals that can accumulate in this aquatic biota. This study aims to determine the concentration and bioconcentration of Pb, Zn, Cu, and Cd heavy metals in Anodonta woodiana Lea (freshwater shellfish), Pomacea canaliculata Lamarck (golden apple snail), and Cherax quadricarinatus Von Martens (crayfish) in the Wadaslintang Reservoir. Samples of freshwater shellfish, snails, and crayfish were randomly collected in an area of + 100 m2 in three research stations at a depth of 0.0 - 0.5 m. Sampling was conducted in August - October 2018. The results showed that the three aquatic organisms contained heavy metals Cu, Cd, Pb, and Zn. The highest concentration is in A. woodiana, then P. canaliculata and the lowest concentration is in C. quadricarinatus. The results of the BCF value calculation showed the highest bioaccumulation values found in A. woodiana and P. canaliculata were Zn, which included in the category of moderate accumulation. Whereas in C. quadricarinatus the highest bioaccumulation value is Pb, but it is still included in the low accumulation category

Full article
Journal ID : TRKU-16-06-2020-10810
Total View : 359

Title : Development of Non-Invasive Monitoring Approach to Diagnose Leaks in Liquid Pipelines

Abstract :

This paper presents a novel non-invasive monitoring method, based on a Liénard-type model (LTM) to diagnose single and sequential leaks in liquid pipelines. The LTM describes the fluid behavior in a pipeline and is given only in terms of the flow rate. Our method was conceived to be applied in pipelines mono-instrumented with flowmeters or in conjunction with pressure sensors that are temporarily unavailable. The approach conception starts with the discretization of the LTM spatial domain into a prescribed number of sections. Such discretization is performed to obtain a lumped model capable of providing a solution (an internal flow rate) for every section. From this lumped model, a set of algebraic equations (known as residuals) are deduced as the difference between the internal discrete flows and the nominal flow (the mean of the flow rate calculated before the leak). Once the residuals are calculated a principal component analysis (PCA) is carried out to detect a leak occurrence. In the presence of a leak, the residual closest to zero will indicate the section where a leak is occurring. Some simulation-based tests in PipelineStudio® and experimental tests in a lab-pipeline illustrating the suitability of our method are shown at the end of this article

Full article
Journal ID : TRKU-16-06-2020-10809
Total View : 1

Title : Mini Cold Storage Performance With Diesel Motor As a Compressor Driver

Abstract :

The purpose of this research is to determine the performance of mini cold storage with three rotational variation of diesel engine which are 650 RPM, 700 RPM and 750 RPM, temperature of mini cold storage room reached -20 ºC, initial product temperature 28ºC, the final temperature of the product is -5 ºC, the evaporator temperature is -29 ºC and the condenser temperature is 32 ºC to 34º C. The results shows that in the 650 RPM, the fuel consumption is 13,200 milliliters with a total operating time of 22 hours, for refrigeration capacity of 1,304 kW, refrigerant mass flow rate of 0,0085 kg/s, compressor capacity of 0,35 kW, condenser capacity of 1,65 kW with COP value of 3,75. Whereas in the 700 RPM of diesel engine the total fuel consumption is 10,400 milliliters with a total operating time of 16 hours, for refrigeration capacity of 1,74 kW, the mass flow rate of refrigerant is 0,011 kg/s, compressor capacity is 0,45 kW, condenser capacity of 2.19 kW with COP value of 3,85. Furthermore, in the 750 RPM of diesel engine, the total fuel consumption is 13,300 milliliters with a total operating time of 19 hours, for refrigeration capacity of 1,483 kW, the mass flow rate of refrigerants is 0,00980172 kg/s, compressor capacity is 0,405007 kW, condenser capacity is 1.89 kW with COP value of 3,6. it was concluded that the use of a 700 RPM diesel motor produces the highest COP value (3.85) with efficient and effective fuel consumption (10,400 milliliter)

Full article

Certificates


//