Technology Reports of Kansai University (ISSN: 04532198) is a monthly peer-reviewed and open-access international Journal. It was first built in 1959 and officially in 1975 till now by kansai university, japan. The journal covers all sort of engineering topic, mathematics and physics. Technology Reports of Kansai University (TRKU) was closed access journal until 2017. After that TRKU became open access journal. TRKU is a scopus indexed journal and directly run by faculty of engineering, kansai university.
Technology Reports of Kansai University (ISSN: 04532198) is a peer-reviewed journal. The journal covers all sort of engineering topic as well as mathematics and physics. the journal's scopes are
in the following fields but not limited to:
Kongzhi yu Juece/Control and Decision
Azerbaijan Medical Journal
Gongcheng Kexue Yu Jishu/Advanced Engineering Science
Zhonghua er bi yan hou tou jing wai ke za zhi = Chinese journal of otorhinolaryngology head and neck surgery
Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology
Wuhan Ligong Daxue Xuebao (Jiaotong Kexue Yu Gongcheng Ban)/Journal of Wuhan University of Technology (Transportation Science and Engineering)
Zhonghua yi shi za zhi (Beijing, China : 1980)
Changjiang Liuyu Ziyuan Yu Huanjing/Resources and Environment in the Yangtze Valley
Tobacco Science and Technology
Shenyang Jianzhu Daxue Xuebao (Ziran Kexue Ban)/Journal of Shenyang Jianzhu University (Natural Science)
General Medicine (ISSN:1311-1817)
Today’s popularity of the Internet has since proven an effective and efficient means of information sharing. However, this has consequently advanced the proliferation of adversaries who aim at unauthorized access to information being shared over the Internet medium. These are achieved via various means one of which is the Distributed denial of service attacks – which has become a major threat to the electronic society. These are carefully crafted attacks of large magnitude that possess the capability to wreak havoc at very high levels and national infrastructures. This study posits intelligent systems via the use of machine learning frameworks to detect such. We employ the Deep learning approach to distinguish between benign exchange of data and malicious attacks from data traffic. Results shows consequent success in the employment of deep learning neural network to effectively differentiate between acceptable and non-acceptable data packets (intrusion) on a network data traffic (9pt).
The increasing awareness of the depletion of fossil fuel resources and their bad impact towards environmental lead to an application of biofuel as alternative choice. The production of biofuel from waste offers a triplet-facet solution includes economic, environmental and waste management. In the present study, the use of biofuel that most abundantly available for power generation is applicable in the form of waste. Coconuts are the abundant renewable resource of energy can be found in all around the world especially Southeast Asia like Malaysia, Indonesia and Philippines. In this study, the waste of coconut shell was prepared to become a biofuel in form of powder or pulverized. The sample was undergo burning process at five different air flow rate that been set up. The effect of burning pulverized coconut shell on environmental impact was studied from CO2 and CO emission. The influence of air flow rate on ash properties were studied using SEM image and EDX analysis. The results revealed that microstructure of coconut shell ash are irregular, asymmetrical, disperse and non-overlap compare to coal. The influence of air flow rate of primary gave effect on the CO2 and CO emission. As the air flow rate increased, the weight of carbon fly ash increases while oxygen experiencing the decreases. In addition, the existed elements such as C, O, Mg, Fe and Ni for each cases were determined. It was also found that the coconut shell is lower in ash content, it tends to produce less particulates and has almost no Sulphur oxides compare to coal. At the end of this work, research would like to recommend use of coconut shell as an additive material in heat generation as it is not containing harmful ash content.