Technology Reports of Kansai University

Technology Reports of Kansai University (ISSN: 04532198) is a monthly peer-reviewed and open-access international Journal. It was first built in 1959 and officially in 1975 till now by kansai university, japan. The journal covers all sort of engineering topic, mathematics and physics. Technology Reports of Kansai University (TRKU) was closed access journal until 2017. After that TRKU became open access journal. TRKU is a scopus indexed journal and directly run by faculty of engineering, kansai university.

Google Scholar

Submission Deadline

Volume - 63 , Issue 09
10 Oct 2021
Day
Hour
Min
Sec

Upcoming Publication

Volume - 63 , Issue 05
31 Aug 2021

Aim and Scope

Technology Reports of Kansai University (ISSN: 04532198) is a peer-reviewed journal. The journal covers all sort of engineering topic as well as mathematics and physics. the journal's scopes are in the following fields but not limited to:

Electrical Engineering and Telecommunication Section:

Electrical Engineering, Telecommunication Engineering, Electro-mechanical System Engineering, Biological Biosystem Engineering, Integrated Engineering, Electronic Engineering, Hardware-software co-design and interfacing, Semiconductor chip, Peripheral equipments, Nanotechnology, Advanced control theories and applications, Machine design and optimization , Turbines micro-turbines, FACTS devices , Insulation systems , Power quality , High voltage engineering, Electrical actuators , Energy optimization , Electric drives , Electrical machines, HVDC transmission, Power electronics.

Computer Science Section :

Software Engineering, Data Security , Computer Vision , Image Processing, Cryptography, Computer Networking, Database system and Management, Data mining, Big Data, Robotics , Parallel and distributed processing , Artificial Intelligence , Natural language processing , Neural Networking, Distributed Systems , Fuzzy logic, Advance programming, Machine learning, Internet & the Web, Information Technology , Computer architecture, Virtual vision and virtual simulations, Operating systems, Cryptosystems and data compression, Security and privacy, Algorithms, Sensors and ad-hoc networks, Graph theory, Pattern/image recognition, Neural networks.

Civil and architectural engineering :

Architectural Drawing, Architectural Style, Architectural Theory, Biomechanics, Building Materials, Coastal Engineering, Construction Engineering, Control Engineering, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Materials Engineering, Municipal Or Urban Engineering, Organic Architecture, Sociology of Architecture, Structural Engineering, Surveying, Transportation Engineering.

Mechanical and Materials Engineering :

kinematics and dynamics of rigid bodies, theory of machines and mechanisms, vibration and balancing of machine parts, stability of mechanical systems, mechanics of continuum, strength of materials, fatigue of materials, hydromechanics, aerodynamics, thermodynamics, heat transfer, thermo fluids, nanofluids, energy systems, renewable and alternative energy, engine, fuels, nanomaterial, material synthesis and characterization, principles of the micro-macro transition, elastic behavior, plastic behavior, high-temperature creep, fatigue, fracture, metals, polymers, ceramics, intermetallics.

Chemical Engineering :

Chemical engineering fundamentals, Physical, Theoretical and Computational Chemistry, Chemical engineering educational challenges and development, Chemical reaction engineering, Chemical engineering equipment design and process design, Thermodynamics, Catalysis & reaction engineering, Particulate systems, Rheology, Multifase flows, Interfacial & colloidal phenomena, Transport phenomena in porous/granular media, Membranes and membrane science, Crystallization, distillation, absorption and extraction, Ionic liquids/electrolyte solutions.

Food Engineering :

Food science, Food engineering, Food microbiology, Food packaging, Food preservation, Food technology, Aseptic processing, Food fortification, Food rheology, Dietary supplement, Food safety, Food chemistry. AMA, Agricultural Mechanization in Asia, Africa and Latin America Teikyo Medical Journal Azerbaijan Medical Journal

Physics Section:

Astrophysics, Atomic and molecular physics, Biophysics, Chemical physics, Civil engineering, Cluster physics, Computational physics, Condensed matter, Cosmology, Device physics, Fluid dynamics, Geophysics, High energy particle physics, Laser, Mechanical engineering, Medical physics, Nanotechnology, Nonlinear science, Nuclear physics, Optics, Photonics, Plasma and fluid physics, Quantum physics, Robotics, Soft matter and polymers.

Mathematics Section:

Actuarial science, Algebra, Algebraic geometry, Analysis and advanced calculus, Approximation theory, Boundry layer theory, Calculus of variations, Combinatorics, Complex analysis, Continuum mechanics, Cryptography, Demography, Differential equations, Differential geometry, Dynamical systems, Econometrics, Fluid mechanics, Functional analysis, Game theory, General topology, Geometry, Graph theory, Group theory, Industrial mathematics, Information theory, Integral transforms and integral equations, Lie algebras, Logic, Magnetohydrodynamics, Mathematical analysis.

Latest Articles of

Technology Reports of Kansai University

Journal ID : TRKU-09-12-2020-11356
Total View : 431

Title : Analysis of the Time to Peak Modelling

Abstract :

The synthetic unit hydrograph method is a popular method for analyzing watershed flood discharge for rivers that do not have observational flood hydrographs. To create flood hydrographs for rivers with no or very few observed flood hydrographs, it is necessary to require data on characteristics or parameters of watershed areas (DAS). The Time to peak Model in this study will consider several parameters including the area of the watershed (A), the length of the main river (L), the length of the river from the center of the watershed to the outlet (Lc), river slope (S), watershed roughness (n), factor the shape of the watershed (Fb), as well as the fractal characteristics of the watershed in the form of river branching ratio (RB) and river length ratio (RL). To get the accuracy of the time to peak model and to get a flood hydrograph that can represent the prototype, it is necessary to do some statistical analysis. The time to peak model predicted using linear regression analysis produced the time to peak equation (Tp) as a function of watershed area (A) and river length from the center of the watershed to outlet (Lc). This equation has a good level of accuracy with a correlation coefficient of 0.893; The coefficient of determination is around 0.797 and Adjusted R2 is around 0.746. The model has also met the requirements of the classical assumptions including linearity test, residual normal test, heteroscedasticity test, autocorrelation test (indicated by the Durbin Watson value of 1.895 with the interpretation of no autocorrelation) and multicollinearity test. Model validation has NSE value of 0.731 (good), RMSE value of 0.482 and MAE value of 0.390 (both RMSE and MAE values are close to zero). Model verification has NSE value of 0.758 (very good), RMSE value of 0.394 and an MAE value of 0.320 (both RMSE and MAE values are close to zero).

Full article
Journal ID : TRKU-08-12-2020-11354
Total View : 350

Title : New Evidences from Magnetotelluric, Gravity, and Passive Seismic Tomography Data Interpretation of the Tecto-Volcano System Delineation in Southwestern Part of Central Java, Indonesia

Abstract :

Magneto telluric, Gravity, and Passive Seismic Tomography (PST) surveys were conducted over the southwestern part of Central Java, Indonesia. The thick volcanic sediments conceal the prospective sedimentary basin in the area, which has been researched for more than five decades without any significant results. New evidence of the tecto-volcano system in the study area was found based on the methods. The study reveals two major geological structures in the area. The northeast-southwest lineaments, which correspond to the Meratus Thrust-Folds were strike-slip faulted by the Pamanukan-Cilacap Fault Zone (PCFZ) in the northwest-southeast directions. The Meratus Thrust-Folds existence proved that the study area is related to the Paleogene Fore-Arc Basin. However, the Meratus Thrust-Folds has been vanished partially due to the volcanism activities. Superimposed calderas of the ancient-volcanoes system were distinct in the area. The circular patterns which are interpreted as the part of ring-fault are found based on the Gravity dataset as well as the geomorphology and geological formation. The old magmatic chamber and the volcano conduit system within the calderas have been modeled based on the Magneto telluric dataset and confirmed with the PST interpretations. The interpretation is constrained by the existing exploration well. Two eruption points delineated following the high-resistive zones of the Magneto telluric dataset, while another eruption points are estimated based on circular patterns. All of the eruption points are located at around PCFZ as the weak zone, where the plume passes through and rising the volcanoes.

Full article

Certificates


//