The liquid fission products (including 90Sr) waste could be treated by the adsorption method. The metal-organic framework (MOF) has been known as an adsorbent that could be used to treat waste, but its utilization for treating strontium waste has rarely been researched. This paper aims to explain the ability of some MOF materials (MOF-5 and MOF-199) in adsorbing strontium from liquid waste. The MOF synthesis was conducted by the solvothermal method. The SEM, XRD, FTIR, and BET used to test the characteristics of synthesized crystals. The concentration of liquid strontium waste was varied at 25 ppm, 50 ppm, and 100 ppm. Another variable is the adsorption temperature that was varied at room temperature (27oC) and 35oC. Both MOF-199 and MOF-5 were added in each variation. The supernatants formed were tested by Atomic Absorption Spectrophotometer (AAS) to measure absorbed concentration. The sampling points were at the 10th, 30th, 40th, 50th, 60th, 90th, and 120th minutes. These were calculated using the Langmuir adsorption model. The synthesis of MOF-5 and MOF-199 has been successfully conducted by solvothermal method that is confirmed with the XRD, FTIR, BET, and SEM tests. The MOF-5 synthesized in this research has a much better adsorption capacity than MOF-199 one at room temperature. The MOF synthesized in this research (370.37 - 833.333 mg/g) has much better maximum adsorption capacity for strontium than reported by other research