Technology Reports of Kansai University (ISSN: 04532198) is a monthly peer-reviewed and open-access international Journal. It was first built in 1959 and officially in 1975 till now by kansai university, japan. The journal covers all sort of engineering topic, mathematics and physics. Technology Reports of Kansai University (TRKU) was closed access journal until 2017. After that TRKU became open access journal. TRKU is a scopus indexed journal and directly run by faculty of engineering, kansai university.
Technology Reports of Kansai University (ISSN: 04532198) is a peer-reviewed journal. The journal covers all sort of engineering topic as well as mathematics and physics. the journal's scopes are
in the following fields but not limited to:
Kongzhi yu Juece/Control and Decision
Azerbaijan Medical Journal
Gongcheng Kexue Yu Jishu/Advanced Engineering Science
Zhonghua er bi yan hou tou jing wai ke za zhi = Chinese journal of otorhinolaryngology head and neck surgery
Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology
Wuhan Ligong Daxue Xuebao (Jiaotong Kexue Yu Gongcheng Ban)/Journal of Wuhan University of Technology (Transportation Science and Engineering)
Zhonghua yi shi za zhi (Beijing, China : 1980)
Changjiang Liuyu Ziyuan Yu Huanjing/Resources and Environment in the Yangtze Valley
Tobacco Science and Technology
Shenyang Jianzhu Daxue Xuebao (Ziran Kexue Ban)/Journal of Shenyang Jianzhu University (Natural Science)
General Medicine (ISSN:1311-1817)
Wind energy is one of the promising alternative energy resources after solar and hydropower. Most of wind turbine technologies are designed at high speed, whereas, not effectively operated in low wind speed areas. An effective technology is required to enhance the possible use of wind energy at low wind speeds. Diffuser Augmented Wind Turbine (DAWT) has been used recently to improve the use of wind turbine in a low wind speed area by manipulating the wind speed. The main concept of this technology is the pressure difference between inside and outside of DAWT which is occurred, hence, it might enhance the wind velocity and the power is increased as well. In this paper, simulation using ANSYS was conducted to investigate the performance of Horizontal Axis Wind Turbine (HAWT) in low wind speed area applying DAWT by modifying the angle and the length of diffuser. The variation of the diffuser angle was in the range 4-16o at L=1.25D. The simulation results showed a good agreement with the reference literature which obtained the increased power around 1.4-2.9 times higher than the non-diffuser wind turbine. The parameter of diffuser length was also investigated at L=0.25D-2.5D, with the significant impacts are obtained until L=1.25D
To explore the sensitive characteristics of tiny hazardous gas molecules (SO, SO2, NO, NO2) on a BN monolayer and C-doped BN monolayer, the B3PLYP functional and 6-311G (d, p) basis set computations were utilized. These gases contribute significantly to environmental deterioration. Adsorption energy, adsorption distance, and charge transfer factors all helped us choose the optimal adsorption location from three options: Center, N, and Bridge. The adsorption energy and electron localization function results indicate that various gas molecules (SO, SO2, NO, and NO2) are chemically adsorbed on a BN monolayer and C-doped BN. Our findings further show that following adsorption, there is a large amount of charge transfer between gas molecules and a BN monolayer and a C-doped BN monolayer, with the exception of one location where the adsorption energy is weak and the charge transfer is weak (NO/pristine BN). This means that an a BN monolayer and a C-doped BN monolayer are more vulnerable to SO, SO2, NO, and NO2 adsorption than pristine and doped graphene, and that gas adsorption on the C-doped BN monolayers is stronger to other gases. Furthermore, small gas molecule adsorption clearly modifies the band - gap and work function of a BN and C-doped BN monolayer to variable degrees. Our study will give theoretical guidance for practical implementations