Technology Reports of Kansai University

Technology Reports of Kansai University (ISSN: 04532198) is a monthly peer-reviewed and open-access international Journal. It was first built in 1959 and officially in 1975 till now by kansai university, japan. The journal covers all sort of engineering topic, mathematics and physics. Technology Reports of Kansai University (TRKU) was closed access journal until 2017. After that TRKU became open access journal. TRKU is a scopus indexed journal and directly run by faculty of engineering, kansai university.

Submission Deadline

Volume - 62 , Issue 09
09 Oct 2020

Upcoming Publication

Volume - 62 , Issue 08
30 Sep 2020

Aim and Scope

Technology Reports of Kansai University (ISSN: 04532198) is a peer-reviewed journal. The journal covers all sort of engineering topic as well as mathematics and physics. the journal's scopes are in the following fields but not limited to:

Electrical Engineering and Telecommunication Section:

Electrical Engineering, Telecommunication Engineering, Electro-mechanical System Engineering, Biological Biosystem Engineering, Integrated Engineering, Electronic Engineering, Hardware-software co-design and interfacing, Semiconductor chip, Peripheral equipments, Nanotechnology, Advanced control theories and applications, Machine design and optimization , Turbines micro-turbines, FACTS devices , Insulation systems , Power quality , High voltage engineering, Electrical actuators , Energy optimization , Electric drives , Electrical machines, HVDC transmission, Power electronics.

Computer Science Section :

Software Engineering, Data Security , Computer Vision , Image Processing, Cryptography, Computer Networking, Database system and Management, Data mining, Big Data, Robotics , Parallel and distributed processing , Artificial Intelligence , Natural language processing , Neural Networking, Distributed Systems , Fuzzy logic, Advance programming, Machine learning, Internet & the Web, Information Technology , Computer architecture, Virtual vision and virtual simulations, Operating systems, Cryptosystems and data compression, Security and privacy, Algorithms, Sensors and ad-hoc networks, Graph theory, Pattern/image recognition, Neural networks.

Civil and architectural engineering :

Architectural Drawing, Architectural Style, Architectural Theory, Biomechanics, Building Materials, Coastal Engineering, Construction Engineering, Control Engineering, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Materials Engineering, Municipal Or Urban Engineering, Organic Architecture, Sociology of Architecture, Structural Engineering, Surveying, Transportation Engineering.

Mechanical and Materials Engineering :

kinematics and dynamics of rigid bodies, theory of machines and mechanisms, vibration and balancing of machine parts, stability of mechanical systems, mechanics of continuum, strength of materials, fatigue of materials, hydromechanics, aerodynamics, thermodynamics, heat transfer, thermo fluids, nanofluids, energy systems, renewable and alternative energy, engine, fuels, nanomaterial, material synthesis and characterization, principles of the micro-macro transition, elastic behavior, plastic behavior, high-temperature creep, fatigue, fracture, metals, polymers, ceramics, intermetallics.

Chemical Engineering :

Chemical engineering fundamentals, Physical, Theoretical and Computational Chemistry, Chemical engineering educational challenges and development, Chemical reaction engineering, Chemical engineering equipment design and process design, Thermodynamics, Catalysis & reaction engineering, Particulate systems, Rheology, Multifase flows, Interfacial & colloidal phenomena, Transport phenomena in porous/granular media, Membranes and membrane science, Crystallization, distillation, absorption and extraction, Ionic liquids/electrolyte solutions.

Food Engineering :

Food science, Food engineering, Food microbiology, Food packaging, Food preservation, Food technology, Aseptic processing, Food fortification, Food rheology, Dietary supplement, Food safety, Food chemistry.

Physics Section:

Astrophysics, Atomic and molecular physics, Biophysics, Chemical physics, Civil engineering, Cluster physics, Computational physics, Condensed matter, Cosmology, Device physics, Fluid dynamics, Geophysics, High energy particle physics, Laser, Mechanical engineering, Medical physics, Nanotechnology, Nonlinear science, Nuclear physics, Optics, Photonics, Plasma and fluid physics, Quantum physics, Robotics, Soft matter and polymers.

Mathematics Section:

Actuarial science, Algebra, Algebraic geometry, Analysis and advanced calculus, Approximation theory, Boundry layer theory, Calculus of variations, Combinatorics, Complex analysis, Continuum mechanics, Cryptography, Demography, Differential equations, Differential geometry, Dynamical systems, Econometrics, Fluid mechanics, Functional analysis, Game theory, General topology, Geometry, Graph theory, Group theory, Industrial mathematics, Information theory, Integral transforms and integral equations, Lie algebras, Logic, Magnetohydrodynamics, Mathematical analysis.

Latest Articles of

Technology Reports of Kansai University

Journal ID : TRKU-13-04-2020-10681
Total View : 256

Title : Effective Strategies used by Teachers to Support Grade 4 Mathematics Learners in Addition and Subtraction of Word Problems

Abstract :

The study sought to investigate effective teaching and learning strategies appropriate for Grade 4 mathematics learners in solving addition and subtraction of word problems in some selected schools in the Thaba Nchu District, Free State, South Africa. Six participant teachers were observed during teaching and learning. Purposive as well as random sampling techniques were utilised for the study to select thirty mathematics teachers from six schools. At least four teachers from each school were randomly selected for the quantitative part and six teachers, one from each school were selected purposively for classroom observation. Six Grade 4 classes were observed and were chosen purposively based on the cluster sampling technique, three using English as a home language and three schools using English as a second language. Quantitative data were analysed using frequencies and percentages whilst qualitative analysis was conducted through content analysis. The findings of the study revealed that educators used teacher-centred method rather than learner-centred in teaching and was found not to support Grade 4 learners in addition and subtraction of word problems. However, the study also revealed that teachers used some alternate teaching strategies to support learners in the learning of addition and subtraction of word problems, which included teaching learners about reflection when solving problems, asking learners to explain and justify their claims, and code-switching. Furthermore, the study revealed that educators enjoyed using physical objects like cardboard and practical work in teaching and learning of addition and subtraction in word problems. Recommendations were made concerning the above findings

Full article
Journal ID : TRKU-12-04-2020-10680
Total View : 285

Title : On The Routing Metric in UAVs Networks

Abstract :

As a result of technological advances in robotic systems, electronic sensors, and communication techniques, the production of unmanned aerial vehicle (UAV) systems has become possible. Their easy installation and flexibility led these UAV systems to be used widely in both the military and civilian applications. Note that the capability of one UAV is however limited. Nowadays, a multi-UAV system is of special interest due to the ability of its associate UAV members either to coordinate simultaneous coverage of large areas or to cooperate to achieve common goals/targets. This kind of cooperation/coordination requires a reliable communication network with a proper network model to ensure the exchange of both control and data packets among UAVs. Such network models should provide all-time connectivity to avoid dangerous failures or unintended consequences. Thus, the multi-UAV system relies on communication to operate. Flying Ad Hoc Network (FANET) is moreover considered as a sophisticated type of wireless ad hoc network among UAVs, which solved the communication problems into other network models. Along with the FANET unique features, challenges and open issues are also discussed especially in the routing protocols approach. We will try to present the expected transmission account metric with a new algorithm for reliability. By using this algorithm, the function of routing protocols will be more effective in high mobility environments

Full article