Technology Reports of Kansai University

Technology Reports of Kansai University (ISSN: 04532198) is a monthly peer-reviewed and open-access international Journal. It was first built in 1959 and officially in 1975 till now by kansai university, japan. The journal covers all sort of engineering topic, mathematics and physics. Technology Reports of Kansai University (TRKU) was closed access journal until 2017. After that TRKU became open access journal. TRKU is a scopus indexed journal and directly run by faculty of engineering, kansai university.

Google Scholar

Submission Deadline

Volume - 66 , Issue 01
20 Jan 2024
Day
Hour
Min
Sec

Upcoming Publication

Volume - 66 , Issue 01
31 Jan 2024

Aim and Scope

Technology Reports of Kansai University (ISSN: 04532198) is a peer-reviewed journal. The journal covers all sort of engineering topic as well as mathematics and physics. the journal's scopes are in the following fields but not limited to:

Electrical Engineering and Telecommunication Section:

Electrical Engineering, Telecommunication Engineering, Electro-mechanical System Engineering, Biological Biosystem Engineering, Integrated Engineering, Electronic Engineering, Hardware-software co-design and interfacing, Semiconductor chip, Peripheral equipments, Nanotechnology, Advanced control theories and applications, Machine design and optimization , Turbines micro-turbines, FACTS devices , Insulation systems , Power quality , High voltage engineering, Electrical actuators , Energy optimization , Electric drives , Electrical machines, HVDC transmission, Power electronics.

Computer Science Section :

Software Engineering, Data Security , Computer Vision , Image Processing, Cryptography, Computer Networking, Database system and Management, Data mining, Big Data, Robotics , Parallel and distributed processing , Artificial Intelligence , Natural language processing , Neural Networking, Distributed Systems , Fuzzy logic, Advance programming, Machine learning, Internet & the Web, Information Technology , Computer architecture, Virtual vision and virtual simulations, Operating systems, Cryptosystems and data compression, Security and privacy, Algorithms, Sensors and ad-hoc networks, Graph theory, Pattern/image recognition, Neural networks. Lizi Jiaohuan Yu Xifu/Ion Exchange and Adsorption Fa yi xue za zhi

Civil and architectural engineering :

Architectural Drawing, Architectural Style, Architectural Theory, Biomechanics, Building Materials, Coastal Engineering, Construction Engineering, Control Engineering, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Materials Engineering, Municipal Or Urban Engineering, Organic Architecture, Sociology of Architecture, Structural Engineering, Surveying, Transportation Engineering.

Mechanical and Materials Engineering :

kinematics and dynamics of rigid bodies, theory of machines and mechanisms, vibration and balancing of machine parts, stability of mechanical systems, mechanics of continuum, strength of materials, fatigue of materials, hydromechanics, aerodynamics, thermodynamics, heat transfer, thermo fluids, nanofluids, energy systems, renewable and alternative energy, engine, fuels, nanomaterial, material synthesis and characterization, principles of the micro-macro transition, elastic behavior, plastic behavior, high-temperature creep, fatigue, fracture, metals, polymers, ceramics, intermetallics.

Chemical Engineering :

Chemical engineering fundamentals, Physical, Theoretical and Computational Chemistry, Chemical engineering educational challenges and development, Chemical reaction engineering, Chemical engineering equipment design and process design, Thermodynamics, Catalysis & reaction engineering, Particulate systems, Rheology, Multifase flows, Interfacial & colloidal phenomena, Transport phenomena in porous/granular media, Membranes and membrane science, Crystallization, distillation, absorption and extraction, Ionic liquids/electrolyte solutions.

Food Engineering :

Food science, Food engineering, Food microbiology, Food packaging, Food preservation, Food technology, Aseptic processing, Food fortification, Food rheology, Dietary supplement, Food safety, Food chemistry.

Physics Section:

Astrophysics, Atomic and molecular physics, Biophysics, Chemical physics, Civil engineering, Cluster physics, Computational physics, Condensed matter, Cosmology, Device physics, Fluid dynamics, Geophysics, High energy particle physics, Laser, Mechanical engineering, Medical physics, Nanotechnology, Nonlinear science, Nuclear physics, Optics, Photonics, Plasma and fluid physics, Quantum physics, Robotics, Soft matter and polymers.

Mathematics Section:

Actuarial science, Algebra, Algebraic geometry, Analysis and advanced calculus, Approximation theory, Boundry layer theory, Calculus of variations, Combinatorics, Complex analysis, Continuum mechanics, Cryptography, Demography, Differential equations, Differential geometry, Dynamical systems, Econometrics, Fluid mechanics, Functional analysis, Game theory, General topology, Geometry, Graph theory, Group theory, Industrial mathematics, Information theory, Integral transforms and integral equations, Lie algebras, Logic, Magnetohydrodynamics, Mathematical analysis.

Latest Articles of

Technology Reports of Kansai University

Journal ID : TRKU-04-04-2020-10637
Total View : 217

Title : Optimizing Business Ability Prediction Using Random Forest, Case Study: Fabric Company in Indonesia

Abstract :

In difficult economic situation, business ability is one main part of business survival. This paper proposes a business ability prediction by using the dataset from the survived SMEs which affected from financial crisis in Indonesia in 1997. We examined 17 features which could be used to predict the business ability by utilized feature rankings. With optimized random forest which obtained by utilizing parameter grid search and feature rankings, we obtained fairly good result in predicting business ability compared with another machine learning approach

Full article
Journal ID : TRKU-04-04-2020-10636
Total View : 235

Title : Fractionation antibiotic isolate: trial protocol for antibiotic compound from Barleria prionitis L. extract

Abstract :

Barleria prionitis L. leaf ethanol extract has the potential as an antibiotic. To obtain a simpler compound from ethanol extract, it is necessary to fractionation the antibiotic of landep leaves using hexane and ethyl acetate gradient and to conduct antibiotic testing using Kirby Bauer method on Staphylococcus aureus and Escherichia coli bacteria. Solvent gradients that have the potential as antibiotics include hexaneethylacetate (1: 9) and (2: 8). Analysis of the compounds responsible for the potential antibiotic activity of each fraction using GCMS (Gass Chromathography Mass Spectrum) analysis instruments. The results of the analysis of the hexane-ethylacetate (1: 9) fraction produced 70% similarity of 2 (3H) -Furanone, dihydro- (CAS) Butyrolactone. The solvent gradient of hexane-ethylacetate (2: 8) produced 89% similarity to 6.8-Dioxabicyclo (3.2.1) Octan-2. Beta.-Ol-3.3-D2

Full article

Certificates


//